Inhalt
- TL; DR (zu lang; nicht gelesen)
- Rückblick: Multiplikation von Brüchen mit unterschiedlichen Nennern
- Nun zum Teilen von Brüchen
- Zwei Beispiele für das Teilen von Brüchen
- Ein Trick zum Erinnern
- Tipps
- Was ist mit Teilen gemischter Zahlen?
Wenn Sie zwei Brüche addieren oder subtrahieren, müssen beide Brüche den gleichen Nenner haben. Für die Multiplikation oder Division von Brüchen spielen die Nenner jedoch keine Rolle. Wenn Sie multiplizieren, arbeiten Sie einfach quer über den Bruch, indem Sie alle Zähler und dann alle Nenner miteinander multiplizieren. Das Teilen von Brüchen funktioniert genauso, mit der Hinzufügung eines weiteren Schritts am Anfang.
TL; DR (zu lang; nicht gelesen)
Um Brüche unabhängig vom Nenner zu dividieren, drehen Sie den zweiten Bruch (den Divisor) um und multiplizieren Sie das Ergebnis mit dem ersten Bruch (der Dividende).
Damit a / b ≤ c / d = a / b × d / c = ad / bc
Rückblick: Multiplikation von Brüchen mit unterschiedlichen Nennern
Bevor Sie zum Teilen von Brüchen übergehen, nehmen Sie sich einen Moment Zeit, um den Vorgang zum Multiplizieren von Brüchen zu überprüfen. Sie werden diese Fähigkeit auch für die Bearbeitung von Divisionsproblemen benötigen.
Wenn du mit einem Multiplikationsproblem des Formulars konfrontiert bist a / b × c / dEs ist egal, was die Nenner sind. Alles, was Sie tun müssen, ist, die Zähler zu multiplizieren und diese als Zähler Ihrer Antwort zu schreiben. dann multiplizieren Sie die Nenner und multiplizieren Sie diese als Nenner Ihrer Antwort.
Beispiel 1: Berechnen Sie 2/5 × 1/3.
Denken Sie daran, für die Multiplikation spielt es keine Rolle, ob Ihre Brüche den gleichen Nenner haben. Alles, was Sie tun müssen, ist geradeaus zu multiplizieren. Das gibt Ihnen:
2 (1) / 5 (3), was vereinfacht ergibt:
2/15
Wenn Sie Ihre Antwort vereinfachen können, indem Sie Faktoren sowohl vom Zähler als auch vom Nenner streichen, sollten Sie. In diesem Fall können Sie jedoch nicht weiter vereinfachen, sodass Ihre vollständige Antwort lautet:
2/5 × 1/3 = 2/15.
Nun zum Teilen von Brüchen
Nachdem Sie nun überprüft haben, wie Brüche multipliziert werden, funktioniert das Teilen von Brüchen fast genauso - Sie müssen nur einen zusätzlichen Schritt hinzufügen. Drehen Sie den zweiten Bruch (auch als Divisor bezeichnet) auf den Kopf und ändern Sie dann die Operation in Multiplikation statt Division.
Also, wenn Ihr ursprüngliches Teilungsproblem so aussieht:
a / b ÷ c / d
Das erste, was Sie tun, ist, den zweiten Bruch auf den Kopf zu stellen und ihn zu machen d / c; Ändern Sie dann das Divisionszeichen in ein Multiplikationszeichen.
a / b × d / c
Und weil Sie das Multiplizieren von Brüchen geübt haben, wissen Sie, wie man das löst. Multiplizieren Sie einfach die Zähler und Nenner. Das ergibt folgendes Ergebnis:
a / b ≤ c / d = ad / bc
Zwei Beispiele für das Teilen von Brüchen
Nun, da Sie den Vorgang zum Teilen von Brüchen kennen, ist es an der Zeit, einige Beispiele zu üben.
Beispiel 2: Berechnen Sie 1/3 ÷ 8/9.
Denken Sie daran, dass der erste Schritt darin besteht, den zweiten Bruch auf den Kopf zu stellen und die Operation in Multiplikation zu ändern. Dies gibt Ihnen:
1/3 × 9/8
Multiplizieren Sie jetzt einfach und vereinfachen Sie:
1(9)/3(8) = 9/24 = 3/8
Also 1/3 ÷ 8/9 = 3/8.
Beispiel 3: Berechnen Sie 11/10 ÷ 5/7
Beachten Sie, dass einer dieser Brüche nicht korrekt ist (sein Zähler ist größer als sein Nenner). Dies ändert jedoch nichts an der Aufteilung der Brüche. Drehen Sie den zweiten Bruch auf den Kopf und ändern Sie die Operation in Multiplikation:
11/10 × 7/5
Multiplizieren Sie nach wie vor und vereinfachen Sie, wenn Sie:
11(7)/10(5) = 77/50
77 und 50 teilen keine gemeinsamen Faktoren, so dass Sie nicht weiter vereinfachen können. Ihre endgültige Antwort lautet also:
11/10 ÷ 5/7 = 77/50
Ein Trick zum Erinnern
Wenn Sie Schwierigkeiten haben, sich daran zu erinnern, kann es hilfreich sein, sich daran zu erinnern, dass Multiplikation und Division wechselseitige Operationen sind. das heißt, einer macht den anderen rückgängig. Wenn Sie einen Bruch auf den Kopf stellen, spricht man auch von einem Kehrwert. Damit d / c ist das Gegenteil von CD, und umgekehrt.
Das heißt, wenn Sie einen Bruch teilen, führen Sie das tatsächlich aus wechselseitige Operation auf einen reziproker Bruch. Diese beiden Wechselwirkungen müssen vorhanden sein, damit das Problem gelöst werden kann. Wenn Sie nur einen von ihnen haben - sagen wir, wenn Sie die Kehrwertoperation (Multiplikation) durchgeführt haben, ohne zuerst den Kehrwert dieses zweiten Bruchs zu nehmen -, wäre Ihre Antwort nicht korrekt.
Tipps
Was ist mit Teilen gemischter Zahlen?
Wenn Sie aufgefordert werden, gemischte Zahlen zu teilen, achten Sie darauf - es ist eine Falle! Bevor Sie fortfahren können, müssen Sie diese gemischte Zahl in einen falschen Bruch umwandeln. Sobald dies erledigt ist, folgen Sie genau dem gleichen Prozess, den Sie für die richtigen Brüche verwenden würden. In Beispiel 3 oben sehen Sie, wie das funktioniert. Es enthält einen falschen Bruch 11/10, der auch als gemischte Zahl 1 1/10 geschrieben werden kann.