So berechnen Sie die durchschnittliche Zunahme

Posted on
Autor: Laura McKinney
Erstelldatum: 3 April 2021
Aktualisierungsdatum: 18 November 2024
Anonim
Änderungsraten Teil 1 | Die durchschnittliche Änderungsrate by einfach mathe!
Video: Änderungsraten Teil 1 | Die durchschnittliche Änderungsrate by einfach mathe!

Inhalt

Die durchschnittliche Zunahme bezieht sich auf die durchschnittliche Wachstumsrate, die eine Variable innerhalb eines bestimmten Zeitraums erfährt. Sie können die Mathematik und Theorie der durchschnittlichen Zunahme auf viele reale Situationen wie Geschwindigkeit, Finanzen oder Bevölkerungswachstum anwenden. Die Berechnung der durchschnittlichen Wachstumsrate umfasst die Basisalgebra und ist möglich, solange es endliche Start- und Endwerte gibt.


Schritt 1: Bestimmen Sie die Anfangs- und Endwerte

Suchen Sie den Startwert und den Endwert für einen bestimmten Zeitraum in Ihrer Situation. Beschriften Sie den Startwert als V1 (erster Wert) und den Endwert als V2 (zweiter Wert).

Schritt 2: Bestimmen Sie die Gesamtänderung

Subtrahiere V1 von V2. Die bisherige Gleichung lautet: V2-V1.

Schritt 3: Bestimmen Sie die prozentuale Änderung

Teilen Sie den von Ihnen bestimmten Wert durch V1, um die gesamte prozentuale Änderung zu erhalten. Die Gleichung sieht nun so aus: (V2-V1) / V1.

Schritt 4: Bestimmen der prozentualen Änderung als Funktion der Zeit

Teilen Sie den berechneten Wert durch die Gesamtzahl der Zeiteinheiten für die Änderung. Dies kann eine beliebige Zeiteinheit sein, z. B. Jahre, Stunden oder Minuten. Die Gleichung lautet jetzt: / (Zeit).

Schritt 5: Bestimmen Sie die jährliche prozentuale Veränderung

Multiplizieren Sie den von Ihnen berechneten Endwert, um die jährliche Zunahme in Prozent zu bestimmen. Die endgültige Gleichung lautet dann: {/ (Zeit)} * 100.


Ein Beispiel für diese Berechnung wäre eine Investition, die sich in 10 Jahren von 50 auf 100 US-Dollar erhöht. V1 ist 50 $. V2 ist $ 100 und die Zeit ist 10 Jahre. {/ 10} * 100 = 10% durchschnittlicher Anstieg pro Jahr.